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Abstract. We present a simple method to generate a
perturbed parameter ensemble (PPE) of a fully-coupled
atmosphere-ocean general circulation model (AOGCM),
HadCM3, without requiring flux-adjustment. The aim was
to produce an ensemble that samples parametric uncertainty
in some key variables and gives a plausible representation of
the climate. Six atmospheric parameters, a sea-ice parame-
ter and an ocean parameter were jointly perturbed within a
reasonable range to generate an initial group of 200 mem-
bers. To screen out implausible ensemble members, 20 yr
pre-industrial control simulations were run and members
whose temperature responses to the parameter perturbations
were projected to be outside the range of 13.6± 2◦C, i.e.
near to the observed pre-industrial global mean, were dis-
carded. Twenty-one members, including the standard unper-
turbed model, were accepted, covering almost the entire span
of the eight parameters, challenging the argument that with-
out flux-adjustment parameter ranges would be unduly re-
stricted. This ensemble was used in 2 experiments; an 800 yr
pre-industrial and a 150 yr quadrupled CO2 simulation. The
behaviour of the PPE for the pre-industrial control compared
well to ERA-40 reanalysis data and the CMIP3 ensemble
for a number of surface and atmospheric column variables
with the exception of a few members in the Tropics. How-
ever, we find that members of the PPE with low values of
the entrainment rate coefficient show very large increases in
upper tropospheric and stratospheric water vapour concentra-
tions in response to elevated CO2 and one member showed
an implausible nonlinear climate response, and as such will
be excluded from future experiments with this ensemble. The
outcome of this study is a PPE of a fully-coupled AOGCM

which samples parametric uncertainty and a simple method-
ology which would be applicable to other GCMs.

1 Introduction

1.1 Background on perturbed parameter ensembles

PPEs of general climate models (GCMs) are becoming more
common as a means to assess the range of uncertainty in cli-
mate model projections (Murphy et al., 2004; Stainforth et
al., 2005; Collins et al., 2006; Sanderson, 2011; Yokohata et
al., 2010; Shiogama et al., 2012; Klocke et al., 2011). This
PPE approach is a complement to the Multi-Model Ensem-
ble (MME) approach notably applied in the Intergovernmen-
tal Panel on Climate Change (IPCC) assessments (Solomon
et al., 2007; Meehl et al., 2007b; Taylor et al., 2012). These
two approaches address two aspects of model uncertainty; in
MMEs, the structural uncertainty associated with the under-
standing, discretization and parameterization of the climate
system as a GCM and in PPEs, the parametric uncertainty
associated with the uncertain values of the parameters within
a GCM. The MME approach has the advantage of having
independent modelling schemes (although the fact there is
a somewhat common heritage amongst models and they are
developed by a group of experts sharing similar knowledge,
limits their independence, Masson and Knutti, 2011), but as
the number of possible models is indefinable, any MME will
represent an unquantifiable and incomplete sampling of the
structural uncertainty in climate model predictions (Meehl
et al., 2007b). The PPE approach has the advantage that
members of the ensemble differ in a well-defined way and
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the “parameter space” of all possible parameter combina-
tions can be precisely defined. It is not possible to generate
a large number of models with different structures without a
long programme of model development, however it is possi-
ble to generate a very large number of different versions of
one model by perturbing parameters, with the availability of
computing resources being the only effective limit. For these
reasons, PPE experiments are a useful tool for assessing un-
certainty in climate model projections.

As greater computing resources have become available,
larger and more complex perturbed parameter ensembles of
GCMs have become possible (Frame et al., 2009). There are
many hundreds of uncertain parameters in a GCM and so
expert elicitation is needed to select which parameters are
important and to indicate a reasonable range for these pa-
rameters (Murphy et al., 2004). The early perturbed parame-
ter ensembles consisted of single-parameter perturbations, in
effect a sensitivity test of parametric uncertainty (Murphy et
al., 2004). However, many parameters in a GCM will interact
in complex, nonlinear ways, and so parameters must be per-
turbed simultaneously to explore the full range of response
implied by the prior parametric uncertainty (Stainforth et al.,
2005; Sanderson, 2011; Shiogama et al., 2012). The space of
all uncertain parameters can be very large indeed for GCMs
and so many studies have taken subsets of the most impor-
tant parameters to achieve a more thorough coverage of the
parameter space (Stainforth et al., 2005; Knight et al., 2007;
Shiogama et al., 2012).

Most PPEs to date have used atmosphere-only or slab-
ocean versions of GCMs as these take a few years or a few
decades of model simulation to reach equilibrium respec-
tively, as opposed to the millennia required to fully spin up
a fully dynamic coupled atmosphere-ocean GCM, although
some parametric sensitivity studies have used coupled oceans
(Collins et al., 2007; Brierley et al., 2010; Shiogama et
al., 2012). Most PPE studies with fully coupled models
have used flux-adjustment to keep the ensemble members
from drifting too far from observed climatology. This flux-
adjustment is applied as either a heat, water or momentum
flux into the ocean surface designed to correct for model bi-
ases (Collins et al., 2006). Top-of-atmosphere (TOA) radia-
tive balance is an emergent property in GCMs and the fact
that the models of the IPCC Assessment Report 4 did not
need flux-adjustment was seen as an improvement over ear-
lier models (Solomon et al., 2007).

Numerous methods to test the “realism” of members of a
perturbed parameter ensemble of a GCM have been devel-
oped and these are often used to exclude or weight the mem-
bers of a PPE for the purposes of making projections (Ed-
wards et al., 2011; Murphy et al., 2004; Rodwell and Palmer,
2007). Murphy et al. (2004) analysed a perturbed parameter
ensemble of the UK Met Office Hadley Centre Model version
3 (HadCM3) using the climate prediction index, a method
which applies a set of comparisons to observational data that
gives each member a weight, and which has also been applied

to other PPE studies (Collins et al., 2010). An alternative ap-
proach is to run the GCM in forecast mode, i.e. starting from
observed initial atmospheric conditions, and measure the de-
viation of the simulated atmospheric column from observa-
tions over the course of a few days of simulation (Rodwell
and Palmer, 2007). If the PPE member changes the structure
of the variables throughout the atmospheric column substan-
tially from observations the member can be ruled unrealistic
and excluded or down-weighted. Another, more simple, ap-
proach is that of Edwards et al. (2011), who outlined a “pre-
calibration” approach for testing the “plausibility” of model
output; a set of lenient physical criteria are defined such that
the member should be deemed implausible if it fails to satisfy
any of these loose criteria and those members which remain
should be considered plausible representations of the system.
In this study we do not attempt to rank the ensemble mem-
bers but we follow the spirit of the approach of Edwards et
al. (2011) and test whether or not the ensemble members are
“plausible” representations of the climate system.

1.2 Objectives of this study

In this study, we develop a perturbed parameter ensemble
(PPE) using the fully-coupled AOGCM HadCM3 without
applying flux adjustments. Our study follows on from the
work of Gregoire et al. (2010) who used a Latin Hypercube
sampling scheme to tune a low resolution GCM, the Fast
Met Office/UK universities Simulator (FAMOUS). Here we
adapted this approach to a more computationally expensive
GCM, by estimating the equilibrium temperature response
to the parameter perturbations using the method of Gregory
et al. (2004). We test an efficient approach to initially se-
lect members, which excludes ensemble members that are
expected to deviate too far from the observed global mean
temperature of the pre-industrial in response to their param-
eter perturbations. The objective is to produce an ensemble
of tens of members which have “plausible” behaviour when
compared against the European Centre for medium-range
weather forecasting atmospheric reanalysis dataset (ERA-
40) for the period 1961–1990, and additional observational
data. For comparison, we include results from members
of the World Climate Research Program’s (WCRP’s) Cou-
pled Model Intercomparison Project phase 3 (CMIP3) multi-
model dataset. An application of the ensemble is made to a
quadrupled CO2 experiment. The methodology, selection ap-
proach and results are then discussed. The rest of the paper
is laid out as: methodology in Sect. 2, results and evaluation
in Sect. 3, and discussion in Sect. 4. The Supplement is in-
cluded which consists of 2 tables that detail the parameter
values and some measures of performance for all members
of the ensemble.
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2 Methodology

2.1 HadCM3 model description

The fully coupled atmosphere-ocean general circulation
model (AOGCM) used in this paper is HadCM3 (Gordon
et al., 2000). HadCM3 has been used in the IPCC third and
fourth assessment reports (Houghton et al., 2001; Solomon
et al., 2007) and performs well in a number of tests rela-
tive to other global GCMs (Solomon et al., 2007; Covey et
al., 2003). The speed of HadCM3 compared to the newer
state-of-the-art Met Office Hadley Centre Global Environ-
mental Model version 2 (HadGEM2) (Collins et al., 2011),
makes it a powerful tool for multi-millenial scale climate
studies. It is also ideal for uncertainty analysis studies us-
ing perturbed physics ensembles such as the one presented
here. The horizontal resolution of the atmospheric model is
2.5◦ in latitude by 3.75◦ in longitude, with 19 vertical lay-
ers. The atmospheric model has a time step of 30 minutes
and includes many parameterizations representing sub grid-
scale effects, such as convection (Gregory and Rowntree,
1990) and boundary-layer mixing (Smith, 1993). The spa-
tial resolution in the ocean is 1.25◦ by 1.25◦, with 20 verti-
cal layers. The ocean model component uses the Gent and
McWilliams (1990) mixing scheme, and there is no explicit
horizontal tracer diffusion. The sea-ice model uses a sim-
ple thermodynamic scheme and contains parameterizations
of sea-ice drift and leads (Cattle and Crossley, 1995). We
employ the Met Office Surface Exchange Scheme (MOSES)
1 land surface scheme (Cox et al., 1999), which accounts
for terrestrial surface fluxes of temperature, moisture and
radiation. MOSES includes 4 soil layers recording temper-
ature, moisture and phase changes, a canopy layer and a
representation of lying snow. The representation of evap-
oration includes the dependence of stomatal resistance on
temperature, vapour pressure and CO2 concentration (Cox
et al., 1999). Each grid cell has surface properties; roughness
length, snow-free albedo, etc., which reflect the vegetation
cover present, as derived from the Wilson and Henderson-
sellers (1985) dataset.

2.2 Ensemble design

A relatively small number of simulations will be possible as
we are using a fully-coupled AOGCM which will require
a considerable spinup. Therefore, to allow for a reasonable
coverage of parameter space only a small number of pa-
rameters are chosen. The greater the number of parameters
included in an ensemble the more aspects of the paramet-
ric uncertainty in the model can be assessed; however, with
a greater number of parameters there is a larger parameter
space. One way to quantify the coverage of parameter space
that a given ensemble represents is to imagine dividing each
parameter range into two halves, “low” and “high”, thus there
are 2p combinations of “low” and “high” forp parameters. If

we start with an ensemble of 200 members, a number judged
to be computationally feasible for short runs of this model,
78 % of the “halves” of an 8 parameter space can be covered
but only 20 % of the “halves” of a 10 parameter space and
only 5 % of a 12 parameter space. We chose to start with an
initial ensemble of 200 members and chose to modify only 8
parameters to strike a balance between coverage of parameter
space and the number of important parameters.

We chose to vary the atmospheric, oceanic and sea ice pa-
rameters listed in Table 1. These include the 6 atmospheric
parameters modified in Stainforth et al. (2005), the lateral en-
trainment rate coefficient from the environment into convec-
tive clouds (ENTCOEF), the ice-fall speed (VF1), the crit-
ical relative humidity (RHCRIT), the droplet to rain con-
version rate (CT), the droplet to rain conversion threshold
over land and sea (CW_LAND/SEA, two parameters that
are perturbed as one), the empirically adjusted cloud fraction
(EACF); the sea-ice minimum albedo at melting point (AL-
PHAM); and the background vertical ocean diffusivity pa-
rameter (VDIFF, consisting of two parameters perturbed as
one) used in Collins et al. (2007). The 6 parameters modified
in Stainforth et al. (2005) were chosen for the large impact
that these parameters have on climate sensitivity (Rougier
et al., 2009). The sea-ice minimum albedo (ALPHAM) pa-
rameter was added as it is expected that this ensemble will
be used for paleo-climate simulations of glacial times where
sea-ice parameters may play a more important role than in
the modern day or future (Gregoire et al., 2011). The vertical
ocean diffusivity parameter was added, as this was the ocean
parameter found to have the most significant effect on the
transient climate response of HadCM3 (Collins et al., 2007;
Brierley et al., 2010).

The range for all parameters except for VDIFF were taken
from the expert elicitation in Murphy et al. (2004); however,
the lower ranges of EACF and ALPHAM were extended by
20 % as the standard version of HadCM3 sits at the lower
limit for these parameters. It was reasoned that if the parame-
ter values of the standard version of HadCM3 are reasonable,
small deviations from these values should be reasonable too.
The VDIFF parameter consists of the initial surface back-
ground diffusivity and a rate of increase of diffusivity with
depth which were varied together as in Collins et al. (2007)
and Brierley et al. (2010). All parameters except one are sam-
pled using a uniform prior on parameter value. For VDIFF
the initial diffusivity and the rate of increase of diffusivity
vary as 2x and 4x respectively, wherex varies uniformly from
−1 to 1. This choice for the VDIFF parameter was made af-
ter discussions with the author of a study which presented an
expert elicited range for this parameter (C. Brierley, personal
communication, 2011).

To select parameter combinations a maximin latin hyper-
cube sampling technique was used and 200 combinations of
the 8 parameters drawn (Gregoire et al., 2010; Tang, 1994).
To generate a latin hypercube each parameter range is di-
vided into 200 sections with one point drawn from each of

www.geosci-model-dev.net/6/1447/2013/ Geosci. Model Dev., 6, 1447–1462, 2013
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Table 1.Shows a list of the eight parameters perturbed in the experiment. Shown are the value of the parameter in the standard configuration,
the minimum and maximum for the parameter range, and a short description of that parameter.

Parameter
Name

Standard Value Minimum
Value

Maximum
Value

Description

ENTCOEF 3.0 0.6 9.0 Lateral entrainment rate
coefficient

VF1 1.0 0.5 2.0 Ice-fall speed

CT 1.0× 10−4 5.0× 10−5 4.0× 10−4 Cloud droplet to rain
conversion rate

CW (Land/Sea) 2.0× 10−4

5.0× 10−5
1.0× 10−4

2.0× 10−5
2.0× 10−3

5.0× 10−4
Cloud droplet to rain conver-
sion threshold over land and sea

EACF 0.5 0.47 0.65 Empirically adjusted cloud
fraction at saturation

RHCRIT 0.7 0.6 0.9 Threshold of relative humidity
for cloud formation

ALPHAM 0.5 0.47 0.65 Sea-ice albedo at 0◦C

VDIFF
(Min/Max)

1.0–15.0 0.5–4.0 2.0–58.0 Background vertical diffusivity,
which varies as a function of
depth

the sections of each parameter, ensuring that there is no rep-
etition, and giving good univariate separation between mem-
bers. There are many possible latin hypercubes which satisfy
these conditions and a better sampling is possible with the
maximin latin hypercube approach. Maximin latin hypercube
sampling adds the requirement that each point drawn must
be as far from previous points as possible, thus ensuring a
greater multivariate separation of the ensemble members. At
this stage each point is defined as a small region of parame-
ter space between the minima and maxima of its respective
parameter sections. To get a definitive value for each of the
point’s parameter co-ordinates a random value between the
minimum and maximum of each section of each parameter
is found in turn. Thus, we have 200 well-spaced parameter
value drawn from across the 8 dimensional parameter space.

2.3 Experimental setup

To select members for our final ensemble, we applied a low-
cost selection criterion to these initial 200 members. Instead
of running each one of the 200 ensemble members for several
hundred years to equilibrium, we only ran them for 20 yr. We
then projected the equilibrium temperature of the model runs
using the approach of Gregory et al. (2004) and discarded all
ensemble members that had projected temperature outside
a plausible temperature range. All simulations were started
from the end of a many thousand years long pre-industrial
spinup of the standard version of HadCM3 (standard model),
i.e. with standard parameter values. Around half of the sim-
ulations failed to complete these first 20 yr and these failed

members could not be used for further simulations. HadCM3
is known to be not entirely stable across its parameter space
(Rougier et al., 2009), and without flux-adjustment some oth-
erwise stable simulations have been found to give a simula-
tion so unrealistic that they eventually became numerically
unstable (Murphy et al., 2004).

To make the equilibrium temperature response projections,
we assume that the change in parameters caused an instan-
taneous change in radiative forcing, an approach which has
previously been applied to perturbed parameter ensembles
(Joshi et al., 2010; Shiogama et al., 2012). The projection of
temperature and the initial radiative forcing is made from a
linear regression of the change in temperature and the change
in TOA radiative imbalance from the standard model’s con-
trol mean, in the manner of Gregory et al. (2004). Note
that not all models exhibit radiative balance in equilibrium,
some members of the CMIP3 ensemble show persistent ra-
diative imbalances of up to 4.0 W m−2, if so it is necessary
to project the equilibrium temperature response using the
TOA radiative imbalance anomaly from the standard model.
HadCM3 has only a small persistent TOA radiative imbal-
ance of−0.13 W m−2, and so we adopted the absolute TOA
radiative imbalance. We kept only members which were pro-
jected to have equilibrium pre-industrial global-mean tem-
perature within 2◦C of the estimated pre-industrial tempera-
ture of 13.6◦C (Jones et al., 1999; Brohan et al., 2006), which
form the PPE. The range of±2.0◦C was decided upon as
being approximately equal to the largest difference between
the pre-industrial absolute temperature of a member of the

Geosci. Model Dev., 6, 1447–1462, 2013 www.geosci-model-dev.net/6/1447/2013/



P. J. Irvine et al.: Method for PPE without flux-adjustment 1451

Projected Temperature and Radiative Forcing

-15 -10 -5 0 5 10 15 20 25
Projected Temperature Change (oC)

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

-35-30-25-20-15-10-5051015

E
st

im
at

ed
 In

tit
ia

l R
ad

ia
tiv

e 
F

or
ci

ng
 (

W
m

-2
)

Projected and Measured Temperature

-4 -3 -2 -1 0 1 2 3 4
Projected Temperature Change (oC)

-4

-3

-2

-1

0

1

2

3

4

-4-3-2-101234

M
ea

su
re

d 
T

em
pe

ra
tu

re
 C

ha
ng

e 
(o C

)

Projected Temperature and Radiative Forcing

-5 -4 -3 -2 -1 0 1 2 3 4 5
Projected Temperature Change (oC)

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

-8-7-6-5-4-3-2-1012345678

E
st

im
at

ed
 In

tit
ia

l R
ad

ia
tiv

e 
F

or
ci

ng
 (

W
m

-2
)

a b

c

Fig. 1. Projections of equilibrium temperature and initial radiative forcing for the initial ensemble generated by applying the Gregory et
al. (2004) approach to 20 yr of pre-industrial simulation(a, b). Panel(b) shows the acceptable range of temperatures with dashed lines, i.e.
within ± 2◦C of the observed pre-industrial temperature of 13.6◦C (Brohan et al., 2006; Jones et al., 1999). Panel(c) shows a comparison
between the projected temperature and the simulated temperature at the end of the 800 yr control run. Simulations which completed the first
20 yr are shown in black and those which failed to complete are shown in red, the large green and black point is for the standard model, the
crosses in(b) and(c) show runs which were too warm or cold. The projection method failed for some runs which are shown in blue where
the blue dot shows the temperature and radiative imbalance of the last simulated year rather than the projection.

CMIP3 ensemble (i.e.−1.8◦C) and similar to the spread of
3.3◦C (Meehl et al., 2007b).

The members which passed this selection criterion formed
the final PPE ensemble and were used for further simula-
tions. As we are modifying the ocean and atmosphere of the
model it will take thousands of years for the model to equi-
librate fully. Due to computational constraints we cannot run
the model this long, and so we follow Collins et al. (2007),
and run a 500 yr spinup to allow some degree of adjustment
to the altered conditions. After the spinup 2 further simula-
tions were started, a 300 yr pre-industrial control run and a
150 yr simulation with an instantaneous quadrupling of CO2
(4*CO2).

3 Results

3.1 Initial selection on projected temperature response

The initial selection of the PPE was based on the projected
temperature, Fig. 1a and b shows the projected temperature
and estimated initial TOA radiative imbalance of the ini-
tial 200 members. A large number of the simulations failed

to complete, but there was no clear relation between fail-
ure to complete this first 20 yr and any individual param-
eter. Around three quarters of the simulations which com-
pleted the 20 yr pre-industrial control simulations had very
large changes in TOA radiative balance and were projected
to warm or cool rapidly, deviating greatly from the observed
global-mean pre-industrial temperature. Figure 1c shows the
projected temperature from the first 20 yr and the tempera-
ture after 800 yr of pre-industrial control run for each of the
27 members which were projected to be within±2.0◦C of
the observed pre-industrial temperature of 13.6◦C (Brohan
et al., 2006; Jones et al., 1999). Most of the members of the
PPE are close to their respective projected temperatures, but
two warmer members, and a single cold member, are clearly
outside of the range, with three further runs within 0.2◦C of
the target range. Of the 27 members selected by the Gregory
method≈ 80 % remained within the target window and most
are within a few tenths of a degree of their projected values.
The application of this approach avoided the need to run the
tens of initially rejected members to equilibrium, saving sub-
stantial amounts of computing time.

The final ensemble (hence, PPE) consists of 21 accepted
members, including the standard configuration, with an

www.geosci-model-dev.net/6/1447/2013/ Geosci. Model Dev., 6, 1447–1462, 2013
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Fig. 2. Evolution over the course of the 800 yr pre-industrial control simulation of the global annual means of surface air temperature(a),
top-of-atmosphere radiative balance(b), precipitation(c) and annual-mean sea-ice area(d). The standard version of HadCM3 is plotted with
a thick gray line.

additional 6 failed members. The failed members will be re-
tained, but shown only in plots that illustrate the role of the
parameters. Supplement Table 1 lists the parameter values
and the pre-industrial temperature anomaly from observa-
tions of each of the members of the PPE with the members
which failed the selection criterion marked.

3.2 Pre-industrial spinup

Overall, we ran 800 yr of pre-industrial conditions with the
final ensemble of 21 successful and 6 failed members. Fig-
ure 2 shows the evolution of a number of variables over the
course of the 800 yr pre-industrial control runs, note that the
same colour scheme is used throughout this study to aid the
identification of ensemble members across plots. Figure 2a
and b show that most members of the PPE behave as if an
instantaneous radiative forcing had been applied, in other
words, they follow an asymptotic approach to a new equi-
librium temperature and the radiative imbalance is decaying
to zero. One member has a markedly higher radiative imbal-
ance which is at 0.5 W m−2 at the end of the control run but
remains within the target temperature range after 800 yr. The
change in precipitation, Fig. 2c, shows a rapid adjustment to
the altered atmospheric conditions followed by a temperature
driven change in precipitation (Bala et al., 2010). The sea-ice
area, Fig. 2d, changes quite significantly, with the warmer

members losing up to a third of their sea-ice, and some mem-
bers gaining sea-ice area.

Figure 3a shows that the deep ocean has not adjusted
fully to the parameter perturbations by the end of the pre-
industrial control; all the members of the ensemble show
deep-ocean temperature trends which change little over the
800 yr control run. In fact, even the standard HadCM3 simu-
lation, still shows a slight cooling. Figure 3b shows the evo-
lution of the maximum meridional overturning circulation
in the Atlantic; most members remain close to the standard
model’s condition with an overturning strength of≈ 18 Sv,
but 3 of the members show increased overturning of around
≈ 25 Sv and some also show a large increase in variability.
Although the ocean is not in equilibrium, significant changes
have occurred by the end of the 800 yr pre-industrial control.
Figure 3c and d show the depth profile of the ocean tem-
perature and salinity for the end of the simulations, show-
ing that the condition of the ocean has changed markedly
across the ensemble. We find that changes in ocean temper-
ature at depth are determined more by the atmospheric vari-
ables than by the ocean vertical diffusivity parameter, VDIFF
(not shown). Previous results with a PPE of HadCM3 with
only atmospheric parameters perturbed found that the mem-
bers with the warmest control climate had substantially re-
duced Atlantic overturning (Jackson et al., 2012). However,
we find that the maximum Atlantic overturning strength is
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Fig. 3. Evolution of the global annual means of potential temperature at a depth of 2700 m(a), maximum Atlantic overturning(b) over the
course of the 800 yr pre-industrial control simulation. The figure also shows ocean depth profile of annual and area average temperature(c)
and salinity(d), averaged over years 501 to 800 of the pre-industrial control. The standard version of HadCM3 is plotted with a thick gray
line.

most strongly associated with the value of the VDIFF param-
eter rather than the control temperature, with the members
with the highest values of VDIFF showing a large increase
in overturning whereas the members with a standard or low
value of VDIFF showing little change. This strong response
of Atlantic overturning to changes in VDIFF in HadCM3 was
also found by Brierley et al. (2010).

The effect of the perturbed atmospheric and sea-ice pa-
rameters on the HadCM3 model have been explored in detail
by a number of other studies (Collins et al., 2006; Murphy
et al., 2004; Sanderson et al., 2008a; Knight et al., 2007), as
have the effects of the perturbed ocean parameter (Collins et
al., 2007; Brierley et al., 2010), and so the interested reader
should refer to these for further information. However, we
note here a number of relevant correlations we find between
some parameters and the resulting pre-industrial climate. We
find that the ENTCOEF and VF1 parameters that have pre-
viously been found to have the largest role in controlling cli-
mate sensitivity in the HadCM3 model are also found to exert
significant control over the equilibrium pre-industrial tem-
perature (Rougier et al., 2009; Sanderson et al., 2008a), with
low values of both parameters tending to give warmer con-
ditions. We also find that higher values of ocean vertical dif-
fusivity (VDIFF) are associated with more positive radiative
imbalance in the pre-industrial control, despite not directly

affecting the global energy budget. For high values of the
VDIFF parameter more energy is absorbed by the ocean (up
to ≈ 1.4 W m−2 compared with≈ 0.6 W m−2 in the standard
model), absorbing energy that would otherwise have warmed
the model surface, and vice versa for low values of VDIFF. It
seems likely that this association between high values of VD-
IFF and higher pre-industrial temperatures is due to VDIFF
mitigating the initial rate of temperature change (C. Brier-
ley, personal communication, 2011). It has been found that
high values of VDIFF cause an increase in the flux of en-
ergy into the oceans in the initial years and so may act to
keep members, that would have otherwise warmed too fast,
close to the observed pre-industrial temperature (Brierley et
al., 2010). We also note that the sea-ice minimum albedo pa-
rameter (ALPHAM) has a much smaller effect than surface
air temperature on the pre-industrial sea-ice fraction.

3.3 Comparison of the PPE with ERA-40 and the
CMIP3 ensemble

Figure 4 shows the annual and zonal mean state of the
pre-industrial climate for the PPE and compares this with
the ERA-40 1961–1990 average and the CMIP3 ensemble
(Meehl et al., 2007b). Figure 4a shows that the zonal mean
temperatures of the PPE and the ERA-40 dataset show a
similar distribution. The PPE zonal precipitation, Fig. 4b, is
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Fig. 4. The zonal-mean surface air temperature(a) and precipitation(b) for the PPE simulations with the ERA-40 1961–1990 mean plotted
for comparison. The zonal-mean anomaly between each member of the PPE and the ERA-40 mean for surface air temperature(c) and
precipitation(d). The standard version of HadCM3 is plotted in dark gray and the ERA-40 mean is plotted in black. In(c) and(d) the range
for the CMIP3 ensemble is plotted with light gray bars and the standard deviation of the CMIP3 ensemble around the ensemble mean is
plotted with darker gray bars.

broadly similar to the ERA-40 dataset, however there are no-
ticeable differences south of the equator and polewards of the
sub-tropical dry regions. To put the differences between the
PPE and the ERA-40 dataset in context, Fig. 4c and d show
the anomaly from the ERA-40 dataset for both the PPE en-
semble and the CMIP3 ensemble for SAT and precipitation,
respectively. Most members of both ensembles are colder
than the ERA-40 dataset, particularly at high northern lati-
tudes, as one would expect from the warming that occurred
between the pre-industrial and the late 20th century. Some
members of the PPE are up to 4.0◦C warmer than the ERA-
40 dataset in the Tropics, substantially warmer than any of
the CMIP3 members. The low-latitude ocean heat transport
in HadCM3 has been found to be relatively ineffective and on
long timescales this can effectively act as a positive feedback
on radiative imbalances at low-latitudes (Vellinga and Wu,
2008), which could explain why the anomalous behaviour is
limited to this region. Both the PPE and CMIP3 ensembles
show reduced precipitation at high latitudes compared with
the ERA-40 dataset, which again fits with the changes ex-
pected between the pre-industrial and the late 20th century.

Most of the parameters that were perturbed in the PPE
were related to uncertain atmospheric processes, particularly
convective and cloud processes, and so one would expect dif-
ferences throughout the atmospheric column. Figure 5 shows

a comparison between the ERA-40 1961–1990 mean verti-
cal temperature and specific humidity profiles and both the
PPE and the CMIP3 ensemble (Meehl et al., 2007b). The
PPE follows the vertical temperature profile of the ERA-40
dataset, with all members remaining within≈ 5◦C through-
out whereas the CMIP3 ensemble shows a wider spread par-
ticularly at higher altitudes where models differ by up to
10◦C, see Fig. 5a and b. Both the PPE and the CMIP3 ensem-
ble follow the ERA-40 humidity profile with humidity de-
clining with altitude until it reaches around a few ppm at the
tropopause. The ERA-40 dataset and many CMIP3 members
show almost constant humidity throughout the stratosphere
whereas some CMIP3 members and all PPE members show
a continuing decline in humidity with altitude. All members
of the PPE thus have a stratospheric water vapour content
that is of the order of one tenth of the ERA-40 value.

We now evaluate the behaviour of the HadCM3 PPE with
the “plausibility” approach of Edwards et al. (2011) in mind,
using a small number of global-scale metrics of the PPE
performance. We use the 1961–1990 ERA-40 average and
other relevant datasets as the basis for judgments of plau-
sibility, with the ranges from the CMIP3 ensemble shown
for comparison. Supplement Table 2 shows the response of
every ensemble member for the following global-scale met-
rics: global mean temperature, pole to equator temperature
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Fig. 5. The temperature(a, b) and specific humidity(c, d) throughout the atmospheric column for the PPE simulations and the CMIP3
ensemble. The standard version of HadCM3 is plotted in dark gray for the PPE simulations and the ERA-40 1961–1990 mean is plotted in
black. Note that for the PPE cells below ground level, the values are extrapolated using an average lapse rate and included in the level mean.

difference (i.e. the average from 60◦ N to 90◦ N and be-
tween 30◦ S and 30◦ N), global mean precipitation, maxi-
mum overturning strength in the Atlantic, and global-mean
pre-industrial humidity at 100 hPa and at 10 hPa. After 800 yr
of pre-industrial control 6 of the PPE members were found
to fall outside the target temperature of 13.6± 2◦C. The av-
erage pole to equator temperature difference for the PPE is
42.0◦C which is greater than the ERA-40 average of 39.6
for the period 1961–1990, however this may be partly due
to the warming of the 20th century which will be greatest at
high latitudes reducing the pole to equator temperature range.
For the Atlantic overturning circulation we find a number of
members show a substantially stronger overturning than the
observed value of 18.7 Sv reported by Rayner et al. (2011),
but only 2 accepted members of the PPE exceed the range
of 12 to 24 Sv, given as the largest observational range in the
IPCC Assessment Report 4 (Meehl et al., 2007a).

As was shown in Fig. 5 the specific humidity of the PPE
is fairly close to the ERA-40 reanalysis at 100 hPa with an
average value that is 70 % of the ERA-40 value but at 10 hPa
the PPE has between 30 % and less than 1 % of the ERA-
40 value. As absorption of longwave radiation scales ap-
proximately with the logarithm of the concentration of wa-
ter vapour (Forster and Shine, 2002; IPCC, 2007), one could
expect large changes in the water vapour greenhouse ef-
fect in the PPE (Held and Soden, 2000; Forster and Shine,

2002; Joshi et al., 2010). However, the absolute water vapour
content is extremely low and major changes in the strato-
spheric radiation budget would be reflected in the upper at-
mospheric temperatures (Forster and Shine, 2002), but these
have changed little from the standard model values, see
Fig. 5a. Furthermore, the CMIP3 ensemble also includes
many models with very dry stratospheres and this does not
seem to be a critical shortcoming in these models.

Finally, as was shown in Fig. 4, the zonal mean clima-
tology of the PPE generally compares well to the ERA-40
reanalysis, although some exceptions to this are found in
the zonal temperature where some accepted members stand
out clearly from the ERA-40 reanalysis and are well beyond
the CMIP3 ensemble range. It is clear that the PPE shows a
narrower range of behaviour than the CMIP3 ensemble and
that the PPE shares many biases with the standard HadCM3
model configuration. Overall, we judge that the 21 accepted
members of the PPE are plausible representations of the pre-
industrial climate, and we retain all members which passed
the initial temperature selection criterion.

3.4 Elevated CO2 experiments

Figure 6 shows the change in the vertical profile of some
atmospheric variables at the end of the 150 yr 4*CO2 sim-
ulations. All members of the PPE show a temperature re-
sponse to CO2 that is broadly in line with the CMIP3 models
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Fig. 6. The response of the PPE at 4*CO2 throughout the atmospheric column; the anomaly between 4*CO2 and the pre-industrial control
for temperature(a); the ratio of specific humidity between 4*CO2 and the pre-industrial control(b); and the absolute relative humidity at
4*CO2 (c). The standard version of HadCM3 is shown in dark gray. Note that FOR cells below ground level the values are extrapolated using
an average lapse rate and included in the level mean.

(IPCC, 2007), i.e. a warming in the troposphere, a rise of
the tropopause, and a cooling of the stratosphere. There is a
wide spread of temperature response, but all members show
a peak warming in the mid-troposphere which is roughly
50 % greater than the surface warming. At higher altitudes
most members of the PPE show the same cooling of≈ 12◦C
despite a broader range of surface temperature responses,
≈ 6± 1.5◦C; however, one accepted member shows a sur-
face warming of around 11◦C and a high altitude cooling of
around 18◦C, much greater than any other model. Figure 6b
shows the change in specific humidity; up to 100 hPa the hu-
midity increases for all members in a similar way, with the
warmer runs showing a greater increase in humidity. How-
ever, at higher altitudes there is a very broad range of re-
sponse with many members, including the standard model,
showing humidity decreasing to a tenth, or even a hundredth,
of the pre-industrial value and others showing a ten to a hun-
dred fold increase in humidity. However, it is the absolute hu-
midity that determines the magnitude of the radiative contri-
bution of high altitude humidity and all but the two warmest
PPE members remain below the ERA-40 1961–1990 strato-
spheric value of≈ 3 ppm. The warmest PPE member shows
a specific humidity of≈10 ppm, i.e. more than three times
greater than the 1961–1990 ERA-40 stratospheric humidity.
For most members over most of the atmospheric column the

absolute change in relative humidity is less than 5 %, exclud-
ing around 150 hPa, where changes in tropopause height are
evident. The warmest and second warmest accepted mem-
bers (the solid yellow and dashed dark brown lines) stand out
in the specific and relative humidity plots at altitudes above
100 hPa, showing specific humidity levels of order 100 and
10 times greater than the mean response and relative humidi-
ties of order 10 % and 1 % where other models show effec-
tively 0 % relative humidity, see Fig. 6c.

The entrainment rate coefficient (ENTCOEF) plays the
greatest role of any of the parameters in controlling high
altitude humidity, as it controls the mixing of deep convec-
tive plumes with their surroundings (Sanderson et al., 2008a;
Rougier et al., 2009; Murphy et al., 2004), and thus the mech-
anism by which water vapour can reach the upper atmo-
sphere. High values of ENTCOEF are associated with high
climate sensitivities in HadCM3 (Sanderson et al., 2008a;
Forster and Shine, 2002; Joshi et al., 2010; Sanderson, 2011),
and it has been suggested that changes in high altitude hu-
midity contribute to this (Joshi et al., 2010). Figure 7a shows
how the specific humidity at 30 hPa in the pre-industrial con-
trol simulations varies as a function of ENTCOEF; both low
and high values of ENTCOEF are associated with higher spe-
cific humidities in the upper atmosphere. Figure 7b shows
that the effect of ENTCOEF is much more marked in the
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Fig. 7.The specific humidity at 30 hPa for the pre-industrial(a) and 4*CO2 (b) as a function of ENTCOEF, the relative humidity at 30 hPa for
4*CO2 as a function of ENTCOEF(c), and the change in specific humidity at 30 hPa and temperature between the 4*CO2 and pre-industrial
simulations(d). The standard model is shown as a larger black dot and failed runs were included in this plot as gray crosses to make clearer
the role of the parameter. Values of ENTCOEF are also indicated with colours as indicated in the legend.

4*CO2 simulation; members with a value of ENTCOEF be-
low about 2.5 show specific humidities of between 0.5 and
15 ppm whereas others show very low specific humidities of
less than 0.5 ppm (Joshi et al., 2010; Sanderson et al., 2008a;
Sanderson, 2011). ENTCOEF also affects the relative humid-
ity of the stratosphere which increases sharply for values of
ENTCOEF below about 2.5 in the 4*CO2 experiment, see
Fig. 7c. Figure 7d shows that generally the members with
the largest changes in high altitude humidity also show the
largest increases in temperature at 4*CO2.

Figure 8a shows how TOA radiative imbalance and tem-
perature change evolve over the course of the 4*CO2 ex-
periment for the PPE ensemble. The method of Gregory et
al. (2004) involves carrying out a regression on the joint
evolution of temperature and radiative imbalance and is ex-
pected to provide an estimate of the initial radiative forc-
ing perturbation and a final equilibrium temperature after
only a few years or decades of such an instantaneous forc-
ing experiment. Most ensemble members roughly follow the
expected linear trend, although there is a common drift to
higher temperatures towards the end of the runs as was seen
by Gregory et al. (2004) for coupled models. The warmest
ensemble member does not follow a linear evolution of TOA
radiative imbalance and temperature at all, instead after a
number of years the radiative imbalance ceases to reduce
whilst temperature continues to rise at≈ 0.4 K per decade

over the last 50 yr. This nonlinear climate response is also
seen in a number of the failed ensemble members, i.e. those
which fell outside of the temperature limits after 800 yr of
pre-industrial control. The projected equilibrium tempera-
tures of the 4*CO2 simulations (4*CS) are shown in Fig. 8b,
these are found by applying the Gregory method to the entire
150 yr timeseries. This long fitting period was applied to cap-
ture some of the deviation that the members with the great-
est warming show. Most accepted ensemble members have a
4*CS in the range of 6.5–10.5◦C, with the warmest accepted
member having an estimated 4*CS of 35◦C, although this
is likely an underestimate due to the breakdown of the lin-
ear relation between increasing temperatures and decreasing
TOA radiative imbalance. We also note a weak correlation
between high pre-industrial temperature and climate sensi-
tivity.

Figure 9a shows how precipitation and temperature evolve
over the course of the 4*CO2 experiment for the PPE en-
semble. All members seem to follow the expected evolution
of a rapid reduction in precipitation followed by a recovery
as temperatures rise, which is approximately linear for all
models including the warmest member (Bala et al., 2010).
The response of precipitation to changes in radiative forcing
has been conceptualized as consisting of a fast component
or “precipitation adjustment”, corresponding to a change in
the patterns of latent and specific heating particular to the
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Gregory method for all 150 yr of the simulations. The members which failed the pre-industrial temperature selection are included as gray
lines in panel a. All changes are relative to the pre-industrial control simulations.
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Fig. 9. The evolution of percentage precipitation change and temperature change over the full 150 yr of the 4*CO2 simulation relative to
the pre-industrial averages(a), and histograms of the estimated precipitation adjustment(b) and hydrological sensitivity(c) for the 4*CO2
simulation. Linear fits to the first 50 yr of each simulation are used to calculate the precipitation adjustments, which are found from the
intercept where1SAT = 0, and the hydrological sensitivities, which are found from the gradients of the linear fits.

type of forcing, and a more or less independent slow compo-
nent, that depends on the global mean temperature (Andrews
et al., 2010; Bala et al., 2010). This slow, temperature-driven,
component has been called the “hydrological sensitivity” and
is measured in percentage change per degree of warming
(%◦C−1) (Bala et al., 2010; Andrews et al., 2010). Calcu-
lating these values by applying a linear fit to the first 50 yr of
the 4*CO2 experiment we find that the PPE shows a range

of both fast and slow behaviour to the 4*CO2 forcing with
a precipitation adjustment of between−4.8 to−7.0 %, and
a hydrological sensitivity of between 1.8 to 2.3 %◦C−1 (ex-
cepting the warmest accepted member which has a value of
less than 1.6 %◦C−1), see Fig. 9b and c. At 2*CO2 Andrews
et al. (2009) showed an ensemble mean hydrological sen-
sitivity of 2.8 %◦C−1 and a mean precipitation adjustment
of 2.5 % for the CMIP3 models they considered, but in line
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with our HadCM3 PPE results they find a hydrological sensi-
tivity of 2.2 %◦C−1 and a precipitation adjustment of 3.0 %
(roughly half the 4*CO2 value shown here) for the HadSM3
model.

4 Discussion

To produce this non-flux adjusted perturbed parameter en-
semble of HadCM3, an initial ensemble was produced us-
ing a maximin latin hypercube sampling approach and then
a simple selection criteria was applied, based on the pro-
jected temperature response of the members from a 20 yr pre-
industrial simulation. This approach allowed a large num-
ber of initial parameter combinations to be screened to ex-
clude ensemble members that would produce an unrealisti-
cally warm or cold pre-industrial climate. This projection ap-
proach, based on the Gregory method (Gregory et al., 2004),
was largely successful. Only 6 of the 27 members of the
ensemble members failed to remain within the target tem-
perature range of 13.6± 2.0◦C after 800 yr of pre-industrial
simulation (see Fig. 1c), corresponding to a success rate of
80 %, and those that failed were mostly within a few tenths
of a degree of the target range. To aid future applications
of this approach we highlight a number of issues with this
approach. Firstly, many GCMs do not have a perfect radia-
tive balance in equilibrium as they contain energy sources
or sinks of up to a few W m−2 and so we suggest using the
anomaly in TOA radiative imbalance rather than absolute ra-
diative imbalance for making these projections (Mauritsen et
al., 2012). Secondly, internal variability affects projections
based on short timeseries, but longer runs or additional short
simulations obviously increase computational cost and we
judge that 20 yr was a good compromise. Thirdly, we as-
sumed that a change in parameter values would be realised
as an instantaneous change in radiative forcing and a change
in the feedback processes of the model, but this is not neces-
sarily the case. Analysis by Joshi et al. (2010), indicate that
perturbations of the ENTCOEF parameter induce changes
in the climate that do not follow the linear relation between
temperature and radiative forcing that is commonly assumed
(Gregory et al., 2004). Finally, if ocean parameters are per-
turbed the energy balance between atmosphere and ocean
can change independently of the TOA radiative imbalance
(Brierley et al., 2010). Our results suggest that the perturba-
tion of the vertical ocean diffusivity parameter lead to an ad-
justment of the ocean-atmosphere energy balance, which af-
fected our short-term temperature projections. Despite these
difficulties, we believe our use of short-term projections us-
ing the Gregory et al. (2004) approach has been very success-
ful, as running all 200 initial members for 800 yr would have
required≈ 160 000 model years as opposed to the≈ 25 000
model years required with our approach.

The pre-industrial climates of the PPE were evaluated on
the basis of a comparison to the ERA-40 dataset and by

consideration of the spread of the CMIP3 ensemble, see
Sect. 3.3. Most PPE members show behaviour that is rea-
sonably close to the ERA-40 data, but a number of mem-
bers showed tropical temperatures up to 4◦C warmer than the
ERA-40 data and some showed high values for the Atlantic
overturning circulation. All members of the PPE seemed to
share some biases with the standard version of the HadCM3
model. This under-dispersion in the range of behaviour in
the PPE is a common problem for PPEs, particularly those
which perturb only a limited number of parameters (Yoko-
hata et al., 2012). Overall, the initial selection criteria ap-
pears to have been very successful in that it removed all the
members of the PPE which exhibited pre-industrial climatic
conditions that are clearly implausible, but the small number
of perturbed parameters has limited the range of behaviour
within the PPE.

We find very high climate sensitivities for PPE mem-
bers with low values of the ENTCOEF parameter, includ-
ing one accepted member, and a number of the members
which failed the temperature selection criterion, which show
a clearly nonlinear response with unchecked warming in the
later years of the 4*CO2 experiment, see Fig. 8. The mech-
anism behind this unchecked warming has not been defini-
tively identified, but one plausible hypothesis presented in
Sanderson (2011) is that the large increases in upper atmo-
spheric humidity in response to warming in the warmest
member constitutes a very large, positive, clear-sky longwave
feedback which comes to dominate at higher temperatures.
The climate sensitivity of HadCM3 has been found to rise
rapidly for ENTCOEF values below the standard value of 3.0
(see Fig. 6 of Sanderson et al., 2008a and Fig. 6 of Rougier
et al., 2009), and here we find that the stratospheric humidity
response to elevated CO2 also rises rapidly below ENTCOEF
values of about 2.5. Most GCMs simulate a weak strato-
spheric humidity response to warming and small changes in
relative humidity throughout the atmospheric column (Col-
man, 2001; Stuber et al., 2005), which is backed up by ob-
servations of recent warming (IPCC, 2007).

The presence of a nonlinear climate response in this PPE
of HadCM3, suggests that other PPEs of HadCM3 may also
include members which exhibit nonlinear climate responses
which raises a number of issues for the climate sensitivity
estimates made using these (Sanderson et al., 2008b; Ya-
mazaki et al., 2013; Piani et al., 2005). Firstly, it is typical
to assess the realism of PPE members with a control sim-
ulation and to discard unrealistic members of the PPE or
down-weight them, however our nonlinear member did not
perform too poorly in the pre-industrial and so would likely
be included in estimates of climate sensitivity made in these
previous studies. Secondly, estimates of the equilibrium tem-
perature response are typically made by either applying the
Gregory method or by fitting an exponential to the temper-
ature timeseries; if a PPE member exhibits a nonlinear cli-
mate response these methods will not produce reliable es-
timates. Finally and perhaps most importantly there is the
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question of how should a nonlinear climate response be in-
terpreted? Are such runaway climate responses plausible? Or
should PPE methods include a test of the climate response
to elevated CO2 concentrations which screens out members
with nonlinear climate responses? We would suggest that the
PPE members which produced climate sensitivity estimates
towards the extreme upper end may be suspect; either under-
estimating climate sensitivity if such nonlinear climate re-
sponses in HadCM3 are plausible or over-estimating climate
sensitivity if they are implausible and should be excluded.
We thus agree with the conclusion of Joshi et al. (2010)
that the very high climate sensitivities found for low values
of ENTCOEF are very unlikely in light of the observed re-
sponse to warming. We suggest that future PPEs of HadCM3
should test whether a linear climate response best describes
the response of the ensemble members and should consider
restricting the range of ENTCOEF from 0.6–9.0 to 2.0–9.0
to mitigate these issues.

5 Conclusions

This study presents the methodology and some initial results
from a perturbed parameter ensemble (PPE) of a non-flux
adjusted, fully-coupled CMIP3-era GCM. The purpose has
been to create a modestly-sized PPE to explore the effects of
parametric uncertainty on climate and paleo-climate exper-
iments. 200 different versions of the HadCM3 model were
generated with 8 continuous parameters varied. 21 ensemble
members of the HadCM3 model (Gordon et al., 2000), in-
cluding the standard configuration, were selected from these
200 using an estimation of the equilibrium pre-industrial
temperature to constrain the ensemble, i.e. models with pro-
jected temperatures within 13.6± 2◦C were kept (Brohan
et al., 2006; Jones et al., 1999). However, an additional 6
members which were projected to be within the target tem-
perature range were either warmer or colder after the 800 yr
control than the target temperature range and thus were ex-
cluded from the ensemble. Despite the ocean not reaching
equilibrium after 800 yr the pre-industrial control surface cli-
matology of the ensemble compares well on the whole to
the ERA-40 dataset and the CMIP3 ensemble, except in the
Tropics for some members (Meehl et al., 2007b). We find that
not using flux-adjustment and instead constraining our en-
semble on the pre-industrial equilibrium temperature has not
led to a serious curtailment of parameter space as has been
suggested previously (Collins et al., 2006). Applying the en-
semble to a quadrupled CO2 experiment reinforced earlier
findings of links between low values of the entrainment rate
coefficient, large increases in high altitude humidity and high
climate sensitivities in HadCM3 (Joshi et al., 2010). In fact,
one member with a low value of the entrainment rate coeffi-
cient exhibited a clearly nonlinear climate response at 4*CO2
after a few decades, showing a rapid warming without a re-
duction in TOA radiative imbalance. This raises the question

of whether the plausibility of ensemble members’ response
to elevated CO2 concentrations should be evaluated along-
side historical performance in perturbed parameter ensemble
studies.

Supplementary material related to this article is
available online athttp://www.geosci-model-dev.net/6/
1447/2013/gmd-6-1447-2013-supplement.zip.
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